Corex®
An ideal concept for economic and environmental friendly steel production
Outline

Corex
- Corex general
- Corex export gas
- Use of Corex gas for DRI production
- Advantages of HM charging to the EAF

Oxide/DRI Briquetting

Conclusions
Finex® / Corex® / Blast furnace
Process comparison for hot metal production

Finex® route
- Non-coking coal
- Fine ore
- Export gas
- Hot metal
- Slag
- Oxygen

Corex® route
- Non-coking coal
- Lump ore
- Pellets
- Export gas
- Hot metal
- Slag
- Oxygen

Blast furnace route
- Fine ore
- Coking coal
- Sinter plant
- Hot Blast
- Hot metal
- Slag
- Reduction Zone
- Melting Zone
- Gasification Zone

Non-coking coal
Fine ore
Oxygen
Export gas
Hot metal
Slag

Corex® / Finex®
Plants in operation and under construction

- JSW India: 2 x C-2000+DR
- Essar India: 2 x C-2000
- Baosteel China: 2 x C-3000
- Posco Korea: 1 x C-2000/Finex Demo Plant
- Posco Korea: 1 x F-1.5M
- Posco Korea: 1 x F-2.0M
- AM South Africa: 1 x C-2000+DR
- ArcelorMittal South Africa: 1 x C-2000+DR
- Essar India: 2 x C-2000
- Posco：1 x C-2000/Finex Demo Plant
- Posco：1 x F-1.5M
- Posco：1 x F-2.0M
- Baosteel：2 x C-3000
- Corex plant is relocated to XinJiang, (Northwest of China)
Corex® Technology
Available Modules

<table>
<thead>
<tr>
<th>Modules</th>
<th>Diameter</th>
<th>Production Rate</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1000 C-0.5M</td>
<td>5m</td>
<td>40 - 50 t/h</td>
<td>300,000 - 500,000 t/a</td>
</tr>
<tr>
<td>C-2000 C-1.0M</td>
<td>7.3m</td>
<td>100 - 125 t/h</td>
<td>800,000 - 1,000,000 t/a</td>
</tr>
<tr>
<td>C-3000 C-1.5M</td>
<td>8.6m</td>
<td>160 - 180 t/h</td>
<td>1,300,000 - 1,500,000 t/a</td>
</tr>
<tr>
<td>C-2.0M</td>
<td>11.5m</td>
<td>210 - 240 t/h</td>
<td>1,700,000 - 2,000,000 t/a</td>
</tr>
</tbody>
</table>
Outline

Corex
 • Corex general
 • **Corex export gas**
 • Use of Corex gas for DRI production
 • Advantages of HM charging to the EAF

Oxide/DRI Briquetting

Conclusions
Corex® Process characteristics

- Single process without the need of coking or sinter plant
- Direct use of non-coking coal and low quality nut coke as reducing agent
- Direct use of run of mine lump ore and pellets
- High dome temperature (>1000 °C) leads to decomposition of higher hydrocarbons and tar
- Usage of oxygen generates a high valuable, low nitrogen containing export gas
Corex® Export Gas Utilization

Options for Export Gas Utilization

- DRI/HBI for BF, steelmaking
- LRI for BF
- Combustion, Heating
- Power / Steam Generation
- Chemical Processes

Typical Specification

Corex Export Gas

<table>
<thead>
<tr>
<th>Flow</th>
<th>m³(STP)/h</th>
<th>~</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1.0 M</td>
<td>200,000</td>
<td></td>
</tr>
<tr>
<td>C-1.5 M</td>
<td>290,000</td>
<td></td>
</tr>
<tr>
<td>C-2.0 M</td>
<td>380,000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature °C</td>
<td>30 – 50</td>
</tr>
<tr>
<td>Pressure kPa g.</td>
<td>5 – 180</td>
</tr>
<tr>
<td>CO %</td>
<td>38 – 45</td>
</tr>
<tr>
<td>CO₂ %</td>
<td>30 – 35</td>
</tr>
<tr>
<td>H₂ %</td>
<td>15 – 23</td>
</tr>
<tr>
<td>H₂O %</td>
<td>saturated</td>
</tr>
<tr>
<td>CH₄ %</td>
<td>1 – 2</td>
</tr>
<tr>
<td>N₂/Ar %</td>
<td>Balance</td>
</tr>
<tr>
<td>H₂S ppmv</td>
<td><100</td>
</tr>
<tr>
<td>Net Calorific Value</td>
<td>kJ/m³(STP)</td>
</tr>
<tr>
<td></td>
<td>Up to 8000</td>
</tr>
<tr>
<td>Dust mg/m³(STP)</td>
<td><5</td>
</tr>
</tbody>
</table>
Outline

Corex
- Corex general
- Corex export gas
- **Use of Corex gas for DRI production**
- Advantages of HM charging to the EAF

Oxide/DRI Briquetting

Conclusions
Midrex™ process options and flexibility

Beside reformed natural gas as reduction gas, also coal gas based reduction / syngases from different sources such as:

- Corex® export-gas
- Finex® export-gas
- Coke oven gas
- Gasifier syngas

or mixtures of above mentioned gases can be utilized
Use of Corex gas for DRI production
Alternative 1: Corex gas used for heating in the reformer

Corex® Plant

COREX plant

HM

Corex® Gas

CO₂ Removal

Reformer

NG

Midrex™ DR Plant

DR plant

DRI

DR Export Gas
Use of export gas for DRI production
Alternative 2: no recycling of DR export gas

Corex® Plant

COREX plant
Corex® Gas

HM

Gas treatment

Heater

Corex® Gas based Midrex® TM DR Plant

H₂/CO= 0.55

DR Export Gas

DR Plant

DRI
Use of export gas for DRI production
Alternative 3: with recycling of DR export gas

Corex® Plant

COREX plant

HM

Corex® Gas

Gas treatment

Heater

Recycle Gas

H₂/CO = 0.55

Corex® Gas based Midrex™ DR Plant

DR Export Gas

DRI

DR Plant

Gas treatment

Recycle Gas
Use of export gas for DRI production
Alternative 4: with additional Corex gas treatment and recycling of DR export gas

Corex® Gas based Midrex™ DR Plant

Corex® Plant

COREX plant

HM

Gas treatment

Recycle Gas

Heater

H₂/CO = 0.55–2.5

DR Export Gas

DR Plant

DRI
Use of export gas for DRI production
Alternative 4: with additional Corex gas treatment and recycling of DR export gas for existing plants

Corex® Plant to DR Plant

Corex® Gas → Gas treatment → Heater → DR plant → DRI

HM

DR Export Gas

Restrict © Siemens VAI Metals Technologies GmbH 2014 All rights reserved.
Seite 15 April 2014 2nd World DRI and Pellet Congress Abu Dhabi Böhm
Use of Corex export gas for DRI production
Advantages of the alternatives

Alternative 1 (Corex gas used for reformer heating)
- Low investment cost
- Reduction of specific NG consumption at DR plant by approx. 30%

Alternative 2 (no DR export gas recycling)
- Lower investment compared to Alt. 3 and 4
- More suitable for smaller DR plant capacities

Alternative 3 (with DR export gas recycling)
- Lower investment compared to Alt. 4
- Best application for greenfield plants

Alternative 4 (with additional Corex gas treatment and DR export gas recycling)
- Concept available to add Corex gas as reduction gas to existing DR plant without changing DR plant operation practice
- Concept allows to produce DRI to substitute 100% NG for all existing DR plant technologies
Outline

Corex
 • Corex general
 • Corex export gas
 • Use of Corex gas for DRI production
 • Advantages of HM charging to the EAF

Oxide/DRI Briquetting

Conclusions
EAF Steelmaking based on HM and HDRI

Coal → Additives → Lump ore

Lump ore → Corex® Export Gas

Corex® Export Gas → Pellets → CPT

CPT → Export Gas

Export Gas → Hot DRI

Hot DRI → EAF

EAF → Crude Steel

Hot Metal → EAF

Crude Steel → Export Gas
Percentage of hot metal in the charge increases beyond 30%, the rate of oxygen input for decarburization becomes the rate limiting part of the process.

If installing a new EAF, the design can be changed to move the maximum productivity peak to higher HM amounts, even higher than 50%
EAF Steelmaking based on HM and HDRI
Impact of HM on electricity and electrode consumption

Approx. 3.5 kWh reduction per % of Hot Metal input replacing scrap

Electrical Energy Reduction

Electrode consumption with Hot Metal and/or DRI

Approx. 3.5 kWh reduction per % of Hot Metal input replacing scrap
HDRI and hot transport and charging into EAF
Hadeed Solution

- Temperature of HDRI out of HDRI bins continuously above 580 °C
- HDRI quality: 2.5% Carbon and up to 96% Met

Benefits for the EAF:
- Increased productivity determined to be 15-20%
- Power savings of 130-150 kWh/t liquid steel
- Electrode savings of 0.5-0.6 kg/t liquid steel
Advantages of DRI production based on Corex gas

plus

Advantage for all 4 alternatives –
(HM charging to the EAF)
- Decrease of electric power consumption
- Decrease electrode consumption
- Increase of the EAF productivity
- Less dependency from scrap quality
Outline

Corex

• Corex general
• Corex export gas
• Use of Corex gas for DRI production
• Advantages of HM charging to the EAF

Oxide/DRI Briquetting

Conclusions
Ferrous material briquetting – benefits of recycling

Challenge
- Shortage of raw materials
- Steady price increase of raw materials over the last 10 years
- Industry is forced to increase recycling rate
- Dumping costs are major cost factor nowadays

Solution
- Cold briquetting process using well established equipment
- Application of different binder to ensure highest possible product quality
- Briquettes to be charged into Midrex, BF, COREX and BOF

Typical customer benefits
- Recycling of fine ores & waste material leading to reduction in raw material costs
- Short pay back (1-3 years)
- Minimize dumping costs and volume
- Low capital expenditure
- Saving of raw materials

Typical quality impact
- Recycling of fine ores
- Recycling of waste materials
- Oxide briquettes have similar properties as pellets, lump ore or sinter
- Saving of energy since no pre-treatment of materials is required
Ferrous material cold briquetting
Typical process flow

Ore Fines / Dust / DRI Fines / Mill Scale

Sludge → Drying

Binder → Mixing

Water <5% H₂O

Briquetting → Curing / Storage

COREX plant
DR plant
Blast furnace
LD (BOF) converter
Outline

Corex
- Corex general
- Corex export gas
- Use of Corex gas for DRI production
- Advantages of HM charging to the EAF

Oxide/DRI Briquetting

Conclusions
Conclusions

• Corex still the best industrial utilized coal gasifier – gas cleaning included in the process
• 4 different alternatives available to produce DRI from Corex gas
 • Heating in the DR plant
 • “Once through concept” at DR plant
 • “Recycling concept” at DR plant
 • Concept for adding Corex gas and/or substituting NG to existing DR plants
• Corex export gas can substitute natural gas at existing Midrex or HYL DR plants where no NG is available or cost of NG is high
• Significant advantages for EAF operation with hot metal and hot DRI compared to other charge mixtures:
 • Decrease of electric power, electrode consumption
 • Increase of the EAF productivity
 • Less dependency from scrap quality
• Oxide/DRI fines briquetting technology for recycling into shaft furnace available
Christian Böhm

Head Sales Department
Smelting and Direct Reduction

Linz, Austria

Tel.: +43 (732) 6592 5995
Mobil: +43 664 6153304
E-Mail: boehm.christian@siemens.com

siemens-vai.com