Maximising revenue streams from dross generation and recycling

Alan M Peel C.Eng
Mark Bumford
ALTEK Group
Agenda

• What are the various processes available for dross recovery?
• How much more dross – black and white – will be generated in the coming years?
• How complex are they to collect, transport and process?
• Is on-site processing the best option?
• What outlets are there for the non-metallic residues resulting from reprocessing?
Agenda

• What are the various processes available for dross recovery?
Dross Management

- Dross can account for 5% of a facility's total production
- Dross can contain up to 80% aluminum
- 1% aluminum can be lost per minute through oxidation
- The treatment of the dross after skimming is the single most important factor influencing the metal content and the value of the dross
Sources of Aluminium in dross/slag

- **White Dross**
 -> 20-80% Al content

- **Black dross** (side well – low salt)
 -> 5%-25% Al content

- **Salt Slag**
 -> 3%-15% Al content
Dross Management – In the Furnace

• Minimising dross in the furnace MUST be the first priority
 – Type of furnace
 – Burner set up/control
 – Type of scrap
 – Charging/Alloying/Fluxing
 – Electromagnetic stirring
Initial Step

SKIM

COOL

or

HOT PROCESS

LOGISTICS

TIME

LABOUR

ENVIRONMENT
Dross Process - Which way?

• Cooling
 – Disconnects the dross generation from secondary recovery and gives TIME
 – Rapid sealing of aluminium
 – Easier logistics
 – Less environmental impact

• Hot Processing
 – Logistics very important
 – Continued Al burning if dross bins left waiting
 – Difficult if too many furnaces
Dross Management

• Over the years a number of technologies have been developed to address both economic and environmental issues
 – Dross Stirrers
 – Hot Dross Processing in a Tilt Type Rotary
 – Rotary Dross Coolers
 – Inert Gas Coolers
 – Dross Pressing Systems

• Many technologies have not gained universal acceptance
Agenda

• How much more dross – black and white – will be generated in the coming years?
How much more dross in the future?

- Move away from primary to secondary/recycled aluminium
- Conversion of smelter cast houses to re-melt or recycling cast houses
- Impact of lower grade aluminium scrap recycling
- Underlying growth in production of aluminium
- Lightweighting and Growth of Car Production
Dross Generation

- Approx 50M TPY Primary Aluminium Production
- Approx 20M TPY Secondary
- Approx 1.5M TPY White Dross Generated
- Approx 3M TPY Salt Slag and Black Dross Generated
- Annual Growth of 5-7%

- Potential Aluminium Content within Drosses and Slags over 1.5MTPY
Agenda

• How complex are they to collect, transport and process?
Transport Issues?

- Main problems:
 - Fires
 - Dross or slags re-igniting in shipping containers
 - Reactivity with water or moisture:
 - Gaseous emissions of NH_3, CH_4, PH_3, H_2S
 - Therefore need to.....cool effectively......
Skim + Press + Tip
Pressing Results
Secondary Dross Processing

- OPTIONS
 - Tilting Rotary Salt Furnace
 - Mechanical crushing/separation

- People say ‘remove the salt’ BUT there is more than just the salt to consider

- You need to consider all the constituents of in dross!
The Dross Processor

Dross Skulls need to be recycled in a Tilt Type Rotary Furnace

ALTEK 16 MT Tilt Type Rotary Furnace
Issues with cooling salt slag

• Typical cooling times are 24 to 36 hours
• Requires large area for cooling
 – special heat resistant concrete floors,
 – or racking systems
 – Many dross bins
• Temperature for shipping < 100°C
• Aluminium in the slag will burn off
 – Losing valuable Al
 • Creating AlN’s – *leads to the Ammonia generation*
• Dealing with the environmental issues
Salt Slag Cooling – Typical

Cooling times typically 36 hours
Salt Slag Cooling with Dross Press

2.5T pressed in 10 mins

Tipped in 3-4 hours

Metallic Recovery increased by over 5% (7-12%)
Agenda

• Is on-site processing the best option?
Is on site processing the best option?

• YES ...but....
• Need rotary salt furnace - best recovery of Al from dross
• Need to manage the resulting salt slags
 – If located near to a large salt slag processor – ok but there is a cost to this including transportation
 – Otherwise need to recycle the salt slag locally at site
 – Need to ensure by products are non volatile (BASEL convention for transportation restrictions)
• Good after markets for ALL by products if managed correctly....
Is on site processing the best option?

- Challenge - management of the salt slag and also other compounds within the drosses and slags (its not all down to the salt)
- Need effective way to remove these reactive components to ensure safe shipping
Question?

- Where are these gases after both salt and non salt treatment.
- “Answer is locked up in the solids”.
- If you choose the non salt process and the end product gets wet where do gases go to?
- “Answer atmosphere”.
Typical solid components in dross

- Aluminium
- Alumina Oxide (Al_2O_3)
- Spinels ($\text{MgO.}\text{Al}_2\text{O}_3$)
- Aluminium Nitride (2AlN)
- Aluminium Carbides
- Aluminium Sulphites (trace)
- Aluminium Phosphates (trace)
Possible Gaseous Components of Dross are:

- \(\text{NH}_3 \) (Ammonia)
- \(\text{H}_2\text{S} \) (Hydrogen Sulphide)
- \(\text{H}_2 \) (Hydrogen)
- \(\text{SO}_2 \) (Sulphur Dioxide)
- \(\text{CO}_2 \) (Carbon Dioxide)
- \(\text{CH}_4 \) (Methane)
- \(\text{NH}_4\text{OH} \) (Ammonium) Hydroxide)
- Phosphine
- Phosgene (possibly)

So its not just the salt slag you have to consider!
Aluminium Metal compound reactions with water

• $2\text{AlN} + 3\text{H}_2\text{O} \rightarrow 2\text{NH}_3 + \text{Al}_2\text{O}_3$ (Ammonia)

• $2\text{Al} + 3\text{H}_2\text{O} \rightarrow 3\text{H}_2 + \text{Al}_2\text{O}_3$ (Hydrogen)

• $\text{Al}_4\text{C}_3 + 6\text{H}_2\text{O} \rightarrow 3\text{CH}_4 + 2\text{Al}_2\text{O}_3$ (Methane)

• $\text{Al}_2\text{S}_3 + 3\text{H}_2\text{O} \rightarrow 3\text{H}_2\text{S} + \text{Al}_2\text{O}_3$ (Hydrogen Sulphide)
Current Salt Recycling Processes

• All large capacity > 80,000tpy
• All use similar process including following steps:
 – Crushing/screening
 – Leaching – manage off gases
 – Washing/Filtering
 – Re-crystallisation

• Several in Europe (Spain, Italy, Germany, France, UK)
Issues with current Salt Slag Recycling Solutions

• Need large capacity to make economics work hence few located geographically around Europe
• Energy intensive with high operating costs
• Transport issues for the salt slag generators
• Variability of input feed – different sources
Project - ALUSALT

- New development project initiated in 2011
- Objective local salt recycling at salt slag generation source
- Demonstration small capacity pilot plant operational Q1 2015
ALUSALT - Key Principles

- To provide a cost effective solution for recycling salt slag at source of generation
 - From 1000tpy to 20,000tpy

- Benefits:
 - Massive reduction in transportation of salt slag around Europe
 - Fuel cost savings
 - Environmental issues reduced
 - CO$_2$ footprint reduction
 - Re-use of own salt (avoids ‘other things’ being in it)
 - Re-use of own aluminium
 - Provide security and viability of recycling operation
 - Re-use of energy released from salt slag at plant
Agenda

• What outlets are there for the non-metallic residues resulting from reprocessing
End use of NMP

- Steel Industry as a Synthetic Slag (Al$_2$O$_3$)
- Rock Wool
- Cement Industry
- Bricks/Tiles (additive)
- Sandblasting
- Refractory
- Ceramics
- Flux
- Miscellaneous
Summary

1. Minimise Dross Generation in the furnace
2. Consider dross skimming/cooling logistics
3. Rapid cooling and drain important – to maximise Al
4. Disconnect the dross generation process from the secondary dross processing
5. Remelt the Dross in a Tilt Rotary with Salt
6. Press and Rapidly cool the Salt Slag – maximise Al
7. Recycle Salt Slag locally
8. There are markets and uses for the NMP BUT it needs to be inert
Maximising revenue streams from dross generation and recycling

Alan M Peel C.Eng
Mark Bumford
ALTEK Group